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Abstract. Due to the increasing share of wind energy in electricity generation, wind turbines
have to fulfil additional requirements in the context of grid integration. The paper examines to
which extent wind turbines can provide positive control power following the related grid code.
The additional power has to be obtained from the rotating flywheel mass of the wind turbine’s
rotor. A simple physical model is developed that allows to draw conclusions about appropriate
concepts by means of a dynamic simulation of the variables rotational speed, torque, power
output and rotor power. The paper discusses scenarios to provide control power. The supply
of control power at partial load is examined in detail using simulations. Under partial load
conditions control power can be fed into the grid for a short time. Thereby the rotational speed
drops so that aerodynamic efficiency decreases and feed-in power is below the initial value after
the control process. In this way an unfavourable situation for the grid control is produced,
therefore the paper proposes a modified partial load condition with a higher rotational speed.
By providing primary control power the rotor is delayed to the optimum rotational speed so that
more rotational energy can be fed in and fed-in power can be increased persistently. However,
as the rotor does not operate at optimum speed, a small amount of the energy yield is lost.
Finally, the paper shows that a wind farm can combine these two concepts: A part of the wind
turbines work under modified partial load conditions can compensate the decrease of power of
the wind turbines working under partial load conditions. Therefore the requested control power
is provided and afterwards the original value of power is maintained.

1. Introduction
Wind energy covers a significant part of the demand for electricity in many countries, especially
in Denmark (34 percent of the electricity consumption in the year 2013, cf. [1]), Portugal (25
percent), Spain (21 percent) and Germany (8 percent). The increasing proportion of the wind
energy requires to involve wind turbines in the grid control and grid balancing. The expansion
of renewable energies leads to a displacement of classical controllable thermal power plants. In
addition, many renewable energy sources require a very powerful grid control due to fluctuating
input.

By the reason of the limited storability of electrical energy (cf. Erdmann, Zweifel [2], p.
294) is the central task of grid control in maintaining the balance of electricity generation and
demand. Imbalances are equalized with control power. This paper examines the extent to which
wind turbines can provide positive control power.

The grid load is changing constantly subjected by connecting, disconnecting and controlling
of electrical consumers. In power plants, which generate electrical energy by driving a generator



causes a change in the grid load a different counter torque on the generator. Due to the change
in torque arises a new rotational speed. A stationary frequency deviation results because the
speed is proportional to the grid frequency. So, an oversupply of power generation leads in an
increase of the grid frequency. An active power deficit causes a frequency reduction. Therefore
the drive power is controlled, since even small changes in the grid load lead to unacceptable
changes in the grid frequency (cf. Heuck, Dettmann [3], p. 62 - 71).

For the exact balancing of the grid frequency is used a further control loop. These one
eliminates the steady-state error of the rotational speed control. In this case the grid frequency
is used as a control variable instead of the rotational speed. The grid frequency is a result of the
generator speed and is a secondary value. Consequently this control loop is called a secondary
control. In this way the speed control is called primary control. The concept of internal – speed
controller – and external controller – frequency controller – is a classical cascade control (cf.
figure 1). These models represent the simplest case and are valid for stand alone grids with one
power plant. In interconnected power grids set the secondary control the power plant output.

Figure 1. Control of the grid frequency

The frequency control in the power supply is performed by the controlled feeding of primary
control power (cf. [4]). Conventional power plants achieve the power increase by increasing the
fuel supply. This approach is not possible for wind turbines because the plants utilize the entire
potential of the wind. The concepts developed in this work rely substantially on the inertia of
the rotating components of the wind turbine.

The flywheel mass of the turbogenerator also plays an important role in classical power
plants. In distinction to modern wind turbines the speed of the turbogenerator in power plants
is proportional to the grid frequency. The grid-supporting effect of this inertia is assigned to
spinning reserve (cf. [5]).

The profitability is not considered in this paper. The provision of primary control reserve of
renewable energies would get paid the same way as the provision of primary control reserve of
conventional power plants.

2. Operation concepts of wind turbines for providing primary control power
2.1. Providing primary control power at partial load operation
At partial load operation, wind turbines mostly work at this operation point, the entire energy
supplied by the wind is converted into electrical energy, considering the efficiency of the wind
turbine. Variable-speed turbines equalize the drive train loads by storing wind energy from wind
fluctuations as rotational energy. To increase the feed-in capacity, it is possible to take advantage
of the kinetic energy of the rotating parts in the opposite process. By imposing additional power
from the generator, the output torque of the generator shaft is increased. The rotor experiences
a higher counter torque and the rotational speed decreases. The stresses of the modules remain
within the allowed range because the rated power is not exceeded. The following cases can be
distinguished:



(i) The output power is increased by a certain value, while the rotational speed must not be
less than the specified value. Afterwards the rotor accelerates according to the prevailing
wind conditions.

(ii) The output power is increased and provided without considering the rotational speed. A
superior device informs the control system of the wind turbine about the end of the process.
The following situations can occur:
(a) The required control power can be delivered completely. At the end of the process the

rotor has a residual speed and accelerates to operating speed.
(b) The required control power can not be provided completely, since the total kinetic

energy of the rotor was converted. The rotor stops.

2.2. Providing primary control power at modified partial load operation
In partial load operation a reduction in rotor speed results in a lower power output, assuming
previously the wind turbine was at the maximum power point. After an acceleration phase
the rotor reaches the initial rotational speed and the initial power. Thus, the power output
collapses after the control operation. Therefore we suggest a modified operation process for
the partial load range, that prevents power losses at the end of the procedure. To obtain this
desirable property, the partial load speed will be increased. This has two advantages and one
disadvantage:

+ The rotor has a higher rotational energy due to the higher rotational speed. There is a
bigger amount of energy stored, which can be used for the delivery of control power.

+ Because the rotor is operating at a higher rotational speed than the optimal speed, the
power coefficient decreases. While the delivery of control power, the rotor speed returns to
the optimum speed. The power coefficient increases – even the higher power output can be
maintained.

– The previous fact implies directly the disadvantage: In this mode, the rotor does not work
optimal, and loses some energy yield. On the other hand, the system obtains the desired
primary control capability.

The modified operation leads to the scenario:

(iii) In the modified partial load operation primary control power is delivered as long as the
optimum speed is reached.

3. Modelling
The different concepts are evaluated using simulations based on a physical model of the wind
turbine. The following assumptions are made for modelling:

• Bearings, gearbox, generator and inverter have no losses.
• During the control process there is a constant wind speed.
• Generator and inverter can handle all speeds.
• The rotor blades are the result of an ideal design by Schmitz (Gasch, Twele [6], p. 202).

Under these assumptions, the model leads to the ideal case – it calculates the maximum
control power that can be delivered.



3.1. Setting up the model equations
A wind turbine is the basis for the power conversion considerations. The focus is on the modelling
of the rotor dynamics. A dynamic energy balance is expedient.

dE

dt
= Pin − Pout (1)

The storage term dE
dt describes the system’s energy change over time. Especially the energy of

the rotating components of the wind turbine will be investigated. The balancing is done over
the change of rotational energy dEROT

dt . The input power Pin is the power extracted from the
wind – the rotor power. The output power Pout is the electric power produced by the generator
– the generator power.

dEROT

dt
= Protor − Pgen (2)

The wind turbine’s rotor is capable of converting a part of the winds energy. This energy
conversion depends on the rotor design and the rotor angular velocity ω. The generator power
can also be expressed as a rotation against a torque M with the angular velocity ω.

dEROT

dt
= Protor(ω)−Mgen ω (3)

Figure 2. Model for rotor dynamics

The rotational energy of the rotor of the wind turbine is determined by its moment of inertia
J and its angular velocity ω.

EROT = 1
2Jω

2 (4)

These reflections lead to a differential-algebraic system of equations (DAE). It consists of a
differential equation – equation 5 – and an algebraic constraint – equation 6.

ĖROT = Protor(ω)−Mgen ω

EROT = 1
2Jω

2

(5)

(6)



3.2. Solution of the model equations
The model equations are solved with the explicit Euler method. The discretisation turns the
differential quotient of the rotational energy into a difference quotient:

ĖROT ≈
EROT (k + 1)− EROT (k)

4t
(7)

The numerical solution of the system can be obtained by repeatedly performing the following
two equations.

EROT (k + 1) = EROT (k) + (Protor(ω, k)−Mgen(k)ω(k))4t

ω(k + 1) =

√
2EROT (k + 1)

J

(8)

(9)

For step k = 0 the rotational energy is calculated with the angular velocity at the initial step
ω(k = 0):

EROT (0) = 1
2Jω(0)2 (10)

All following steps k ≥ 1 are calculated with the equations 8 and 9 . In this way the results
for the discrete-time functions of the rotational energy EROT (k) and the angular velocity ω(k)
can be calculated:

EROT (1) = EROT (0) + (Protor(ω, 0)−Mgen(0)ω(0))4t (11)

ω(1) =

√
2EROT (1)

J
(12)

EROT (2) = EROT (1) + (Protor(ω, 1)−Mgen(1)ω(1))4t (13)

ω(2) =

√
2EROT (2)

J
(14)

. . .

The simulation variables – the rotational energy and the angular velocity – have been
calculated for the discrete steps k = 0, 1, 2, . . . . The shift to time-related variables is done
via the step size 4t:

t = k4t (15)

3.3. Calculation of the rotor power
The rotor power Protor(ω) includes the aerodynamic aspect in the equation of the rotational
energy. It represents the power obtained by the rotor depending on the respective rotor speed:

Protor(ω) = cP (ω)Pwind (16)



The power coefficient cP is usually expressed over the tip speed ratio λ for a wind turbine.
The exact graph of this function is determined by the profile type of the rotor blades. The tip
speed ratio is obtained directly from the angular velocity, assuming constant wind speed.

Variable-speed wind turbines are always working with the maximum power coefficient in the
partial load range. Upon delivery of primary control power, the speed drops off and the rotor
operates at a lower power coefficient cP, control. By pitching the rotor blades, it is possible to
return to a higher power coefficient cP, control, pitch.

cP, control < cP, control, pitch < cP, max (17)

Besides rotational speed, the rotor power also depends on the pitch angle. In a characteristic
diagram several cP -λ-curves for different pitch angles are listed (cf. figure 3).

Figure 3. cP -λ-characteristic diagram for different pitch angles β.

To maintain the characteristic diagram in figure 3 a rotor was designed according to Schmitz.
Then cP -λ-curves for different pitch angles were determined using the blade element method.
The execution of the two methods, design and rotor blade element method, was performed
according to Gasch, Twele ([6], p. 205 - 221).

The blade element method returns the desired characteristic diagram in the form of a table
(cf. table 1). In each simulation step, the tip speed ratio is determined for the present rotational
speed by the calculation algorithm, which searches in the corresponding row of the characteristic
diagram for the highest cP . The column returns the corresponding pitch angle β.

β = 0◦ β = 1◦ . . .
λ1 cP (λ1, 0◦) cP (λ1, 1◦) cP (λ1, . . . ) . . .
λ2 cP (λ2, 0◦) cP (λ2, 1◦) cP (λ2, . . . ) . . .
... cP (. . . , 0◦) cP (. . . , 1◦) cP (. . . , . . . ) . . .

...
...

... . . .

Table 1. Characteristic diagram of the power coefficient cP .



4. Evaluation of selected scenarios for the primary control capability of wind
turbines
Based on the introduced model the possible contribution of wind turbines in grid control will
be examined. The model parameters are adapted to a wind turbine of 2 MW class. For the
following simulations the wind speed, unless otherwise stated, is set to 8 m s−1.

4.1. Simulation of primary control capability at partial load
An increase in the power output of wind turbines is possible at partial load only by reclaiming
energy of rotation, if the turbine were did not operated throttled previously. The induced drop
in rotational speed shifts the operating range of the rotor to unfavourable power coefficients.
To return to the optimal operating point, the rotational speed is returned to the initial value
after the delivery of the additional energy. This is accomplished by the opposite process. The
generator output power is reduced below the currently available rotor power (P < Protor). Under
this condition, the rotor accelerates and thereby increases its rotational energy. It is not possible
to skip with the phase with reduced power after the delivery of the additional power PA and
continue to operate the turbine at the initial power P0. The output power could only be provided
at the expense of rotational energy. Finally, the system would stop.

Figure 4. Additional power and reduced power at partial load

In figure 4 the profile of the output power at partial load is shown. The bold solid line shows
a possible profile. At the time tbegin the infeed power increases from P0 to PA. The energy
that is delivered additionally in the power grid is just the yellow coloured area under the power
curve. At the end of increased output at time tend follows a phase with reduced infeed power PR.
Compared to normal operation, the infeed of energy that results from the difference between
violet and yellow area is eliminated.

In figure 5 the amount of additional power PA is varied. The duration of the additional power
is 10 seconds. The subsequent reduction in performance is at 10 % of the initial power P0. The
duration of the power reduction is variable. Once the initial speed n0 is reached, it is switched
back to their initial power P0.

The rotational energy (figure 5 a) is converted directly into additional grid infeed power
(figure 5 d) which is the requirement (cf. figure 4). The rotational speed (figure 5 b) drops
significantly with increasing additional energy. Also the rotor power wanes (figure 5 c).

With the help of the torque profile (figure 5 e) the drive train load can be detected. The
loads are not investigated in detail. Some scope to the rated loads does exist in the partial load
operation. Power changes of 50 percent of the rated power are possible in 1 to 2 seconds in
practice (cf. Heier [9], p. 314).

The pitch angle (figure 5 f) is gained from the characteristic map. The higher the additional
power, the more pitch usage is required.



Figure 5. Simulation for different additional powers: +10 % (blue), +20 % (green), +30 %
(red) and +40 % (cyan)

The quantity of electricity, which is lost during the rotor acceleration phase, is always greater
than the amount that is obtained while the rotor deceleration. Once the rotor leaves the
optimum speed range due to the deceleration, the aerodynamic efficiency decreases. Even with
the assumed constant wind speed, the energy conversion of the rotor is reduced by a smaller
power coefficient cP . Thus, in the acceleration phase, there is initially a lower rotor power that
gradually increases with increasing speed. Upon reaching the optimum rotor speed, the rotor
power corresponds with the power at the initial time.

This simple approach is also proposed in the previous paper (cf. [7], p. 433-434). If the
allowed grid frequency range is deceeded, the wind turbines will increase their infeed power
at the expense of their rotational speed. There is no yield loss in normal operation. In the
examined case a wind farm does provide frequency support during a short term failure. The
drop of grid frequency is limited by the control reserve of the wind farm. The acceleration phase
of the wind turbines, characterized by lower infeed power, takes place when the full generating
capacity is available again. In this particular case, it is shown that even the simple approach
can be valuable for the grid balancing.

Another approach proposes the throttling by a pitch angle (cf. [8]). If the grid balance
requires positive control reserve, the pitch angle may reduce and the infeed power increases. Of
course this approach leads to a continuously loss of energy yield.

4.2. Simulation of primary control capability at modified partial load
The modified operation mode at partial load consists, as explained, of an increase in the rotor
speed n > nopt. The progress of the infeed power of the wind turbine during delivering control
power is shown in figure 6. While the rotor is delayed to the optimum angular velocity
ωopt = λopt v/r the generator releases the rotational energy stored in the speed difference
EROT = 1/2 J (2π)2(n2 − n2

opt). This amount of energy is called additional energy II. During
deceleration to the optimum speed increases the aerodynamic efficiency of the rotor, the feed-in
can be increased durably. The infeed amount obtained by this procedure is called additional
energy I. Hence this energy is abandoned in favour of true primary control properties during
normal operation.



Figure 6. Additional power and reduced power at modified partial load

The operating points above the optimum speed are in the cP -λ-characteristic diagram right
side of the maximum power coefficient. The power coefficient decreases further with increasing
speed enhancement and with increasing tip speed ratio. Due to the increased rotational speed
more rotational energy is available. In consequence of the discrepancy to the maximum power
coefficient, the feed-in can be raised permanently. Figure 7 shows the time characteristics of
simulation variables for different speed increases. The advantageous properties increase with
speed enhancement. However, the permanent yield loss increases further.

Figure 7. Speed enhancements of : +5 % (blue), +10 % (green), +15 % (red) and +20 %
(cyan)

The stored rotational energy (figure 7 a) increases with the speed-raising. During the delivery
of the control power, the speed is decelerated to the optimum speed (figure 7 b). The rotor power
leaves the throttled level and reaches the optimal value (figure 7 c). After the delivery of the
additional energy I and II the grid infeed power hits the unthrottled level (figure 7 d).

4.3. Combining both concepts in a wind farm
In a wind farm, the two mentioned concepts can be combined so that the disadvantages are
weakened, and a maximum of the benefits remain. The idea is to operate only a part of the



wind turbines of a wind farm at the modified partial load (mpl). The other part continues to
work in the normal partial load (pl) without yield losses. When control power is requested all
plants provide rotational energy as grid feed. The modified operated wind turbines then have
higher power output, because the operating point is now in the optimum. For the remaining
wind turbines it is necessary to reduce the power output below the initial level to prevent a
further drop in speed. The configuration should be based on the premise that the increased
power of the turbines in the modified operation compensates the reduced performance of the
other turbines. As a result, there is a total power output (t), that can provide control power
and then maintaining the initial level (figure 8).

Figure 8. Infeed power of a wind farm at the request of control power

Table 2 shows an example design for two wind turbines: One turbine operates at partial load
and another one at modified partial load. If 1 % energy yield loss is tolerated, the wind farm can
be provided with a primary control capability. The primary control makes it possible to raise
the infeed power for 20 seconds to 105.5 %. The example is for a wind speed of 7 m s−1. The
speed of the modified operated turbine is increased by 9.5 percent. It may not be ignored that
the values were determined with the idealized model. There are also losses and restrictions in
practice, which have negative effect on the absolute values. Nevertheless the suggested approach
achieves the goal – providing control power.

normal mode control process 20s balancing 57s normal mode

[kW] [%] [kW] [%] [kW] [%] [kW] [%]

WT pl 547 100 564 103 537 98 547 100
WT mpl 537 98 591 108 547 100 537 98

total 1084 99 1155 105.5 1084 99 1084 99

Table 2. Control process in a wind farm, v = 7 m s−1

In the example the balancing process is finished after 57 seconds – the turbine operating at
partial load is accelerated back to the optimum speed. It should be considered that the table 2
is valid for a fixed wind speed. At the time tchange (figure 8) both groups change to intended
normal operation. Afterwards control power can be delivered again. The control capability can
be be used extensively because it is free of charge.



5. Conclusion
Wind turbines can stabilize the grid frequency with short-term, but instantaneously available
control power. If the frequency difference requires a long-term use of control power, wind turbines
bridge the time left until the complete activation of the classical primary control power. In both
cases, wind turbines make an important contribution to grid stability.

The support of other controllable power plants is necessary in the simple approach. The
benefits for the grid control can be reached on two different ways: (1) The total infeed power
can be equalized using the inertia of the wind turbines. In case of short term power system
failures the wind turbines support the grid frequency by converting moderately rotational energy
into additional infeed power. (2) If the classical control power is available, wind turbines can
raise aggressively the infeed power to counteract the drop of grid frequency. The classical power
plants increase the power output additionally in the context of primary control to compensate
the reduced infeed power of wind turbines in the rotor acceleration phase.

The modified version is conditionally capable to participate in the grid control. The available
control power depends on the load of the wind turbines. Thus, the wind turbines have a control
reserve which is gaining in importance at a high share of wind energy in the energy mix.

Figure 9 (cf. Heier [9], p. 337) shows the control structure of a variable speed and grid
connected wind turbine. At high wind speed the power limiting and controlling of the rotational
speed is achieved by the pitch system. At partial load operation the speed is controlled by
the inverter. During normal operation a balance between delivered power by the rotor and the
taken power by the generator is always set. If control power has to be delivered, this equilibrium
condition is temporarily suspended by a special controller. In figure 9 the new controller is
illustrated by dashed blocks and connections. This controller is also connected to the pitch
system. As shown, the pitch control improves the aerodynamic behaviour during decreasing
speed. If the grid frequency or the gradient of the grid frequency leaves the allowed range, the
operation management enables the control power.

Figure 9. Advanced control structure for wind turbines



This paper shows how wind turbines can effectively participate in primary control of the
electrical power grid. The quality of the control power from wind turbines is particularly high.
In contrast to thermal power plants, the control power can be activated instantaneously (cf.
Kurth, Kallina [10]). Thus grid frequency dips can be eliminated at their appearance. The
implementation can be done with a powerful control algorithm and would be a further important
step for the integration of renewable energy into the power system.

6. Future tasks
To obtain the control capability of wind turbines at partial load operation, only minor or
no constructional changes are necessary. A great task consists in the determination of legal
framework conditions for the participation of wind energy in the primary control (cf. [11]).
Furthermore the consideration of the occurring dynamic loads is required as part of the type
approval.

The primary control capability can be acquired with a powerful control software. The model
predictive control (MPC) is considered as a particularly suitable method. The mechanical and
aerodynamic model of the wind turbine rotor is the basis for the MPC to predict the future
behaviour. The power conversion of the rotor is a highly non-linear process. Furthermore, during
the increase in power output constraints need to be considered. For example, the available control
power can be maximized. For both requirements, the handling of a non-linear processes and
consideration of constraints, the MPC is suitable.

Especially the response to the varying wind speed requires a high-performance control
algorithm. So far, disturbance variables were not considered. A decrease in wind speed during
the control process implies another challenge for future work. For reasons of grid stability wind
turbine downtime has to be minimized.

In addition to the control task of an individual wind turbine, the coordination of all plants of
a wind farm will be another objective. Especially in large wind farms many possible variations
of providing control power exist, due to the large number of wind turbines. For example, for true
primary control capability the wind park can be divided into several subsets (cf. figure 8 and
table 2). One subset supplies control power, while the other subsets are in the balancing phase.
In general, the objective of the largest possible available control power at the lowest possible
yield loss faces an optimization problem. To balance and control the amount of control power
kept available at a certain prevailing wind speed should be the focus of upcoming research work.
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